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ABSTRACT 

I n  order  t o  determine the  Fourier transform of a quasi-periodic time 

s e r i e s  ( l i nea r  problem), o r  t h e  power spectrum of a s ta t ionary  random 

time series (quadratic problem), i t  is des i r ab l e  t ha t  da ta  be recorded 

without in te r rup t ion  over a long time in te rva l .  I n  prac t ice ,  t h i s  may 

not be possible.  The e f f e c t  of regular  in te r rup t ion  such a s  t h e  day/ 

night cycle  is w e l l  known. We here i nves t i ga t e  t he  e f f e c t  of i r r e g u l a r  

in te r rup t ion  of da ta  co l l ec t i on  ( the  "breaking" of t he  window function) 

with the  simplifying assumption t h a t  t he re  is a uniform probabi l i ty  p 

t ha t  each in t e rva l  of length T , of t he  t o t a l  i n t e rna l  of length T = NT, 

y ie lds  no data .  

Por the l i n e a r  case w e  f ind  t ha t  t he  noise-to-signal r a t i o  w i l l  

have a (one-sigma) value less than E i f  N exceeds p-l(l - p)~ -* .  

For the quadratic case,  t he  same requirement is m e t  by t he  less r e s t r i c -  

t i v e  requirement t h a t  N exceed p-' ( 1  - p ) ~ - l .  

It appears t h a t ,  i f  four observator ies  spaced around t h e  ea r th  were 

t o  operate  f o r  25 days, each f o r  six hours a day (N = loo) ,  and i f  t he  

probabi l i ty  of cloud cover a t  any s i te  on any day is 20% (p = 0.8), 

the  r . m . 9 .  noise-to-signal r a t i o  is 0.25% f o r  frequencies displaced 

from a sharp s t rong s igna l  by 15 pHz. The noise-to-signal r a t i o  drops 

off rapidly i f  the frequency o f f s e t  exceeds 15 UHZ.  



EXAMINATION OF TIME SERIES THROUGH RANDOMLY BROKEN WINDOWS 

I. INTP.0DUCTION 

In  many as t rophys ica l  problems one is concerned with t h e  study of 

time series. It o f t e n  happens t h a t  t h e  property of p a r t i c u l a r  interest 

is t h e  spectrum of t h e  time series. In  pr inc ip le ,  one may determine a 

time s e r i e s  t o  a prescr ibed accuracy by making measurements, without 

in te r rup t ion ,  over a s u f f i c i e n t l y  long time in t e rva l .  I n  p r ac t i c e ,  t h e  

length of time over which t h e  var iab les  may be measured w i l l  be l imited.  

Moreover, measurements may necesear i ly  be in te r rup ted  (or otherwise impaired) 

f o r  one reason o r  another. The r e l a t i onsh ip  of t h e  spectrum determined 

by l imited,  in te r rup ted  measurements t o  t h e  i n t r i n s i c  spectrum has been 

t h e  sub jec t  of many inves t iga t ions ,  a s  recen t ly  reviewed by Deeming (1975). 

I f  t he  o r ig ina l  time s e r i e s  is  denoted by x ( t ) ,  one may regard t h e  

measurements y ( t )  a s  being determined by 

where f i t )  is t he  "window function." We regard x, y and f a s  being simple 

s ca l a r  funct ions  but t h e  procedure may be generalized t o  rep lace  x, y by 

vectors  and f by a tensor .  

We use t he  Fourier transform nota t ion  

where t he  l i m i t s  of i n t eg ra t i on  a r e  t o  be taken t o  be t o  + i f  o ther  

l i m i t s  a r e  not e x p l i c i t l y  spec i f ied .  



If we a r e  in te res ted  i n  detenaining %(w), the Fourier transform of 

the time s e r i e s  x ( t ) ,  thea we may use the r e l a t i o n  

7(0 )  = dw' f (a') i(w - a ' )  1 
t o  r e l a t e  the  Fourier transform of t he  measured time series y ( t )  t o  t h a t  

of the  o r ig ina l  time s e r i e s  x( t ) .  

We a r e  in te res ted  in the poss ib i l i t y  t h a t  f ( t )  may be regarded a s  a 

random variable ,  expressible  as 

where al,a2, ...% a r e  independent random var iab les  with spezlf ied expec- 

t a t i o n  d i s t r i bu t ions .  By the  cen t r a l  l i m i t  theorem (Papoulis , 1965), we 

expect t ha t  the random var iab le  f (or  its Fourier transform ?) w i l l  have 

a d i s t r i bu t ion  approximately Gaussian i n  form i f  N is not a small number, - 
so tha t  an adequate representation of ? would be given by i ts  mean < f  > 
and i ts standard deviation a(:). 

I f ,  on the other  hand, x ( t )  is a random time s e r i e s ,  we w i l l  be 

concerned with the  autocorrelat ion function R ( t i  defined by 
X 

and the power spectrum of the time sera-es, defined a s  the Fourier transform 

of Rx(t) : 



On noting t h a t  

and evaluating <?(a) f (ow)> , we m y  ve r i fy  t h a t  

where 

Clearly the  function w(w) represents  t he  capab i l i t y  of the  measurement 

process, described by t h e  "window function" f ( t ) ,  t o  determine the  power 

spectrum Sx(w). The funct ion w(w) may be expressed i n  terms of the  inde- 

pendent random var iab les  

Once again,  unless  N i s  a small number, w e  expect t h a t  t he  6 i s t r i b u t i o n  

of w w i l l  be approximately Gaussian so t h a t  it may be character ized by 

its mean value < w > and standard deviat ion a(w) . 
This a r t i c l e  was prompted by a problem re l a t ed  t o  the  determination 

of normal modes of o sc i l l a t i o r .  of the  sun, a s  determined by measurement of 

the  photospheric ve loc i ty  f i e l d .  Measurements have been presented by 

Deubner (1975) and by Rhodes e t  a l .  (1977), and t h e i r  t heo re t i ca l  i n t e r -  

p re ta t ion  discussed by Ulrich and Rhodes (1977) and by Ulrich et a l .  (1978). 

For optimum determination of the  power spectrum of the  ve loc i ty  f i e l d  

(expressed a s  a function of wave number), it is c l ea r ly  des i r ab l e  t o  make 

observations without i n t e rp re t a t i on  over a s  long an i n t e rva l  a s  possible .  

Away from polar regions,  observations from a s i n g l e  s t a t i o n  a r e  interrupted 



by the  day-night cycle  which leads t o  u ~ c c e p t a b l e  r l i a e i n g  of t he  data.  

Observationa mode from a spacecraf t  i n  polar  o r b i t  would obviously y ia ld  

un-aliared data  of higher qua l i ty  and higher frequency resolut ion.  Obsar- 

vat ions made from the  south pole during a u s t r a l  midauol~er can lead  t o  

severa l  days of uninterrupted obsexvation and t o  e t i l l  longer i n t e rva l s  

with occasional, i r r egu la r  in te r rup t ion ,  It is a l s o  possible  t o  select 

three  o r  four s t a t i o n s  around t h e  e a r t h  which, i n  the  absence of any cloud 

cover, could give cont inual  coverage of t he  sun f o r  many weeks. However, 

one must a n t i c i p a t e  t h a t  soate of t h e  da ta  would be l o s t  by cloud cover. 

It is c l ea r ly  des i r ab l e  t h a t  one should be ab l e  t o  make ame esti- 

mate of the accuracy with which o e c i l l a t i o n  modes may be determined when 

it appears possible  t o  observe the  eun over a long in t e rva l  of time losing 

some blocks of time because of cloud cover. The purpose of t h i s  a r t i c l e  

is to  develop a model vhich enables us t o  address problems of t h i s  type. 

After presenting a few general  formulas, ve s h a l l  s implify t h e  problem 

considerably by supposing tha t  observations a r e  made over a l a rge  number 

1 of equal time in t e rva l s ,  each of length T , so t h a t  t he  t o t a l  time 

in t e rva l  T is given by 

With ce r t a in  addi t iona l  simplifying assumptions, w s h a l l  consider the 

s t a t i s t i c a l  propert ies  of t he  functions i ( w )  end w(w) which a r e  repre- 

sen ta t ive  of "randomly broken" window functions.  



I f .  MATHEMATICAL MODEL 

In t he  ca re  that the  window funct ion f ( t )  i r  axpreer iblc  i n  t he  form 

(1.5), in terms of a number of random var lab le r ,  we wish t o  study t h e  d i r t r i -  

bution of t h e  function8 ?(w), W(W), enter ing equation8 (1.4) and (1.10). 

We ruppore that the  d iu t r i bu t ion  of t he  var iable8 al t o  % i r  given by 

t h e  probabi l i ty  function F(al. . . . , %) such t h a t  P(al. . . . . a N)dal . . . , d% 

is the  probabi l i ty  of f inding al i n  the range al t o  al + da e t c .  Then the  1' 

expectation value of t he  quant i ty  ?(a) is given by 

N 
where d a denotes da 1 * - s t  

daN, and PN(a) denotes P(al, . . . , aN) . I f  we 

use the  following notat ion f o r  t he  varlance of a complex var iab le  of a 

complex var iab le  z, 

where z and z a r e  the  real and imaginary pa r t s  of z,  then noting t h a t  r i 

?(- w) is the complex conjugate of ;(&I), we see  t ha t  

The f i r s t  term on the  right-hand s i d e  may be evaluated from 

W e  see  t ha t  equation (2.4) a l s o  gives the  expectation value of t he  

"window spectrum" w(O) which appears i n  equation (1 . lo)  and is appropriate  

f o r  the  discussion of s ta t ionary  random time series. The variance of t h i s  

function is  given by 



wher l 

An indicated i n  the  introduction, w e  intend t o  conrider  the casu that  

the  observing time t o  t o  tN, of l u rg th  T, is divided in to  N e q u l  intervalm 

bounded by times tl . t2, . . . where 

so tha t  we may adopt t he  form 

N 

r ( t ; a l ,  .... a,) - an [ h ( t -  t n - l )  - h ( t -  t n 1 (2.8) 

n - 1  

where h ( t )  is the Heavyside function: 

We a l so  assume t h a t  the In te rva ls  a r e  s t a t i s t i c a l l y  independent, so th t  

we may wri te  

If we assume t h a t ,  f o r  each in t e rva l ,  there  is a (uniform) probabi l i ty  p 

tha t  the window is open and probabi l i ty  1 - p tha t  it is closed. then 

~n evaluating (?(a)). given by ( 2 . 1 ) .  we w i l l  use 

In  evaluating the quantity given by equation (2.4) , we w i l l  need to  

evaluate (am a:, which is c l ea r ly  given by p2 i f  m +  n but by p if m - n. 

6 



vhore 6- ie the lkonecker function. In evaluating the quantity given 

by (2.6). we need to evaluate the expectation value of a a a a . By con- 
m n P Q  

rideri; r, the various porribilicies (m,n,p,q a11 different: two of them 

the same, etc.) we find that 

2 3 4 
+ (p - 4p + 6p - 3p 6Y1P9, (2.14) 

where 6 - 1 i f  m - n - p othervise 0 ,  and 6 
mP 

is defined similarly. 
=Pq 



III* EVALUATION OF MODEL 

For eimple (non-random) time ee r i e r ,  equation (1.4) g iver  the  relat ion-  

rh ip  between the  Fourier tranaforpu of the  o r ig ina l  and measured time ae r i e r .  

In  t h i s  context,  the  propert ier  of the  random window function f ( t )  may be 

characterized by < ?(o)> and a 2 ( i ) .  

On subet i tu t ing  the  farm (2.8) i n to  (1.5), we f ind  that 

On using (2 .I.) and (2.12 j , we obta in  

where s inc  0 = 8-' sln 0. 

On using (2.4), we f ind  t h a t  

Hence, using (2.31, we obtain 

For evaluating the  e f f ec t s  of "breaking" of the  window function, i t  

is convenient to  normalize the standard deviat ion with respect t o  the maxi- 

mun, value of $(&), which is the value a t  w = 0 .  Accordingly, we introduce 

the de f in i t i on  

For the case under consideration, t h i s  has the  form 



For dircuraion of the proper t ie r  of randomly broken windowr i n  the  

study of r ta t ionary  random t i n e  ee r i e r ,  i t  i a  necersary t o  evaluate the 

mun  value and rtandard deviat ion of w(o). The former i. g l v a  by @qua- 

t i on  (3.3). The f irrt  term j.mfde the  bracket8 har the  same f o m  80 .riser 

i n  the non-random case  (p = 1). The second term tepraaents  a change i n  the  

mean rpecttun, ro i t  is convenient t o  lntroduc* the symbol A f o r  the 9 

r a t i o  of the  addi t iona l  t e r n  to  t he  mnxirnun value of t he  pr inc ipa l  tern:  

b2 - Ip-l p (1-p).inc 2 (?TI 1 . 

On writing equation (2.6) i n  the  e i m ~ l e r  form 

and using equations (1.3) and ( 2  .a), we see  that 

On using equation (2.14). we see  tha t  t h i s  m y  be expressed in  the form 

vhete 



On evaluating these  suma, we f ind that 

31 = 16 s i n 4 ( 5 ~ T ) ,  

Et - 16 s i n 2  

E3 

E4 - 16 s i n 2  

E5 = 16 N sln4(f  or). 

Hence equation (3.i0) fs found t o  b e  express ible  a s  



3 4 + 4 ( p  - p ) N-' ainc2(foT) sinc2(f or) 

On using equations (2 .3)  and the  d e f i n i t i o n  

w e  f ind  that 



IV. DISCUSSION 

We see  from the  preceding sec t ior  t h a t  the e f f e c t  of a random "break- 

ing" of the  window function is t o  produce an  a l i a s i n g  of any s igna l .  This 

e f f e c t  is described by the  funct ion C1 o r  by A2 and E2 as given by equa- 

t i ons  (3.5), (3.7) and (3.15). 

For the  "linear" problem, as described by equation (1.4) the  mean 

Fourier transform of the window function, as given by equation (3.2)s 

has the  same form as i t  does i n  t h e  non-random case, although i t  is  

reduced by a f ac to r  p. The standard deviat ion is characterized by C 1 

defined by equation (3.5) and given by equation (3.6). 

It is convenient to introduce the notat ion 

On noting tha t  s i n c  6 5 1 f o r  8 6 1, and t h a t  Isinc 01 5 6-' f o r  0 3 1, 

we see  tha t  C 5 S where 
1 1  

Hence the a l i a s ing  is most severe within the range of a few times wT of 

the  s t rongest  s igna l .  

We may i n fe r  from the above r e s t r i c t i o n  the  minimum number N1 of 

i n t e rva l s  necessary t o  ensure t h a t  C i a  below an assigned l eve l  E for  a 
1 

given value of p. 

Ve see  from (4.2) tha t  we requi re  N > N where 1 



I f ,  f o r  instance, p = 0.8 and we requi re  t h a t  Cl < 0.05, 11 must be a t  

For the  "quadratic" problem i n  which we a r e  determining the spectrum 

of a s ta t ionary  random time s e r i e s ,  the  a l i a s ing  is described by the  

functions A2(u) and Z2(o) given by equations (3.7) and (3.15). 

We s e e  from equation (3.3) t h a t  t he  second term i n  brackets is smaller 

than the  envelope of t he  f i r s t  term, and 80 may be neglected, f o r  w <  o A '  

where 

For o > uA, the second term produces a "tail" t o  the  pr inc ipa l  contribu- 

t i on  to<w(w)> . By an argument s imi la r  t o  t h a t  leading t o  equation ( 4 . 2 ) ,  

we f ind t h a t  b2 5 D2, where 

Now consider the  four terms i n  the second bracket i n  equation (3.15) . 
It is c l e a r  tha t  the th i rd  term may be ignored by comparison with the f i r s t  

-1 since i t  has a s imi la r  dependence on w but includes an extra  f ac to r  N . 
The second term may a l so  be ignored by comparison with the  f i r s t :  the 

extra  f ac to r  N-I ( s in  oT)/ ( s i n  or) has a maximum value of uni ty,  and an 

-112 RMS value of order of N . 
In comparing the fourth term by comparison t o  the f i r s t ,  we see  t h a t  

the r a t i o  is given by 



where 

It is e a s i l y  ve r i f i ed  t h a t  Q(p) 4 0.5 i n  t h e  range 0.5 ( p < 1. hence 

R has a m a x h  value of order 0.5 a t  values  of u f o r  which wT - 2nlr. W e  

f ind tha t ,  when R is averaged over frequency, it va r i e s  with N as dl. 

Hence w e  may, t o  s u f f i c i e ~ t  approximation ignore t h e  four th  term and s o  

replace (3.15) by 

We f ind tha t  L2 5 S2, where 

We see  that, f o r  t he  same values of N and p, the  l w l n u m  value of Z2  is 

211* times l a rge r  than the  maximum value of Z1. Hence the  minlmum number 

N of i n t e rva l s  necessary t o  ensure t h a t  1 Is below an assigned l eve l ,  2 2 

fo r  various values of p ,  is twice t he  corresponding value of N given by 
1 ' 

equation ( 4 . 3 ) .  

However, the  quadratic case is  more complicated tSan t h e  l i n e a r  case  

i n  t ha t  C (w) is more complicated than Z (w), and A (o) is nonzero (whereas 
2 1 2 

A (a) is zero and has been neglected).  1 

14 



On noting that the  dominant term of (3.3) ( t h a t  which survives i n  t h e  

nonrandom case that p = 1)  va r i e s  a.  go)^ f o r  o > o we s e e  that T2(u) T' 

is l e e s  than the  t a i l  of the  dominant term, m d s o  may be neglected, f o r  

w < 9 , where 

, 2-1/2$/2 112 (1 p)-1/2u 
"c P 

- 
T ' (4.10) 

On t he  other  hand, w e  f ind t h a t  S2(u) is less than D2(o) f o r  o > oc, where 

Hence we may, t o  adequate approximation, ignore Z2(u) i n  assessing the  

a l i a s ing  which occurs i n  the  quadratic case. 

We see  from (4.5) t h a t  the  minimum value of N necessary to  ensure 

tha t  A2(0) is l e s s  than some maximum value E is given by N > N2, where 

We see  from ( 4 . 3 )  thar  N 2 is smaller than N1 by the  f ac to r  L. Hence 

a l i a s ing  is l i k e l y  t o  be less ser ious i n  the  quadratic case than Lt is i n  

the l i n e a r  case. 

In  order t o  assess  the implications of the  present model concerning 

ground-based observations of so l a r  o sc i l l a t i ons ,  one will need t o  have 

de ta i led  estimates of the expected spectrum ( i n  pa r t i cu l a r ,  the spacing 

and r e l a t i v e  power of nearby l i n e s )  and the expected cloud cover a t  three 

o r  four observatories positioned round the  world. It is  a l s o  des i rab le  

t ha t  the present model should be extended by considerit,g separate  values 

of p fo r  each of the observatories,  and possibly by taking in to  account 

the cor re la t ion  between cloud cover on consecutive days. 



Nevertheless, we can i l l u s t r a t e  t he  r e s u l t s  of t h i s  model by consider- 

i n s  a hypothetical s i tua t ion .  Suppose t h a t  four  observator ies  a r e  located 

around the  world in such a way as t o  give continuous coverage ( i n  the  

absence of cloud cover), and that these observator ies  a r e  operated f o r  25 

days. Then N = 100. Suppose that, f o r  any observatory on any day, t he re  

is 20% probabi l i ty  of cloud cover s o  t ha t  p = 0.80. We f ind  from (4.1) 

that (using v = o/2r ) ,  vT = 1 5 ~  Hz. For frequencies less than t h i s  value,  

(4.5) shows that t h e  a l i a s i n g  amounts t o  0.25% o r  less. For frequencies 

above 15).1Iiz, the a l i a s i n g  drops of f  rapidly.  

Although i t  w i l l  be necessary t o  make more de t a i l ed  and s p e c i f i c  

ca lcu la t ions  t o  draw d e f i n i t e  conclusions, it appears from t h e  above simple 

enample t ha t  it  may be possible  t o  car ry  out  high-quality s tud i e s  of so l a r  

~ e c i l l a t i o n s  from a chain of ground-based observator ies .  

This work was supported i n  pa r t  by NASA Grant NGL 05-020-272, Off ice  

of Naval Research Contract N00014-75-C-0673, and the  Max C. Fleischmann 

Foundation. 
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